If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+38x=280
We move all terms to the left:
x^2+38x-(280)=0
a = 1; b = 38; c = -280;
Δ = b2-4ac
Δ = 382-4·1·(-280)
Δ = 2564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2564}=\sqrt{4*641}=\sqrt{4}*\sqrt{641}=2\sqrt{641}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{641}}{2*1}=\frac{-38-2\sqrt{641}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{641}}{2*1}=\frac{-38+2\sqrt{641}}{2} $
| 2x+20+70=180 | | 30x^2-30x=-1.4 | | 10^x=45 | | .10x+40x(100)=50 | | 10-3/5x=4 | | 0.4x+10=0.1(x+20) | | 40+.10x100=50 | | 2d+(3/4)=1 | | 69=1/2(3x+5)(x) | | 2b+7=b+16 | | 15v^2+26v-21=0 | | x+7+7x=45 | | √5−4w=√w+8 | | (3x–1)(5x+4)–15x2=17 | | x+8+2x=360 | | 481=(1*p+0.152*p) | | 11x+19x-6+5=-7x+5-6 | | 2x+5.5=25.5 | | 2/3=3t/5+1 | | H(-2)=5x^2-4 | | 72=6(m+3.8) | | 6{2b-4}b=5 | | n+4/3=3 | | x+6/7=5/x+8 | | 24=2a+8 | | 529.60=32(x+2.55) | | x+6/7=5/x | | -3/4(z-1/6)=-1/8(z-2/3) | | 6w-11=-5w+11 | | 8y-65=180 | | 8y-75+40+y=180 | | 2(1-5x)+1=5x |